Can you solve the locker riddle? - Lisa Winer

View full lesson: Your rich, eccentric uncle just passed away, and you and your 99 nasty relatives have been invited to the reading of his will. He wanted to leave all of his money to you, but he knew that if he did, your relatives would pester you forever. Can you solve the riddle he left for you and get the inheritance? Lisa Winer shows how. Lesson by Lisa Winer, animation by Artrake Studio.

Video tags:


Comments

The point is how can she solve them all when she got no tentacle eyes to look at each locker ! What ? Like run to all lockers and see the answers in them ? Like wont it consume time to solve the puzzle ?
They're still gonna pester her for eternity for getting it right. He might as well just have left her the money.
BUT 81 HAS 4 FACTORSSS HELP
I got it correct!!!
First of all how can she look at all those lockers unless she is given time to look at them but I believe there is a time limit or its time consuming for the lawyer to wait for all of them to take their time looking at the lockers and especially for the owner who owns the safety locker business unless the girl have tentacle eyes to look at the lockers formation so all in all she wont get to get the inheritance and not even the family members so all in all the grandpa choices was futile but there is a way where she can get the inheritance by telling each member separately that she knows how to solve it by manipulating them and tell each member he should stand at one locker so once he sees the answer they come and tell her what they saw so then she tells each to get in a room and end their life or closing the door on them and thus she get to know all the words and solves it without having to look at each locker which would've cost time then she gets the inheritance.
What about 13,17,19, etc ???
Who is watching at the 3000's??? Don't like my comment .3.
Why Didn't He Just Tell The Little Girl The Solution?
It was really hard
'Mum, can you put me up for adoption please?' Problem solved.
Banking on you hahaha
I love riddles
So your eccentric uncle is banking on the fact that you binge-watch Ted-ed's riddles.
I am confusion
Made this answer at 2:37 it's 1 I think
I would like to do this riddle but the animation contradicts itself, the second key doesn't change the first locker, yet the third key does.. (1111->1010->0001)?According to how this scenario is worded the first three state changes of the first four lockers should either be (1111->0101->1100) or (1111->1010->1000). If the animation is correct then why isn't it clearly stated that even numbers begin at 0 and odd numbers begin at 1? It would have to alternate between the two for the animation to make sense at all. I just watched the solution and it says that 3 remains open yet in the explanation animation it clearly gets closed LOL. I didn't even attempt this because of that.
I really love Ted Ed's riddles.
2:56Well I am not in elementary school but okay
She educated
Yeah about that I'm not smart
The solution: Something that has to do with math, sorry don't do math.
Who else watches these videos just for the story and cute animations?
This is a pretty easy one (if i'm right). the lockers that have an odd number of factors will stay open. The only way to have an odd number of factors is to have a product pair that is a number squared. so 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100. alright, got that right. the clues give an even easier answer. first 5 prime numbers, or 2, 3, 5, 7, and 11 sweet, 2 for 2
Nahhh my uncle will never do dah
"7, 11" GIRLL DON'T DROP THAT ALCOHOL-
Narrator:But how? Me:Because I'm smart!!!
Who came from class?It was so fun trying to solve this question with the class and teacher!!Im 11.
Am I the only one who gets 80% success rate.. :D These are easy.. Try Shakuntala Devi's puzzles..
I'd like to think I understand but really, I don't because my brain can't process it.
Plot twist: one of your relatives has heard this riddle before and beats you to the punch
1:51 but I just told him I know And now you want me to actually figure it out πŸ˜πŸ˜πŸ˜πŸ˜ΆπŸ˜ΆπŸ˜ΆπŸ˜ΆπŸ™ƒπŸ™ƒ
My brain literally hurts now
To be honest, this was a bit confusing
I am on a TED-ED riddle marathon right now, I am not even pausing the damn video to think! hahaa
That moment when you realized that you have forgot eighth grade math ([email protected])
Sorry don't do maths
So after you get the valuables the 99 relatives can just beat up you and your uncle
My uncle forgot to tell me the riddle stuff
It took me hour and half, but i did it :)
You know, this girls report card is the number 1 thing I must see
Professor layton
I solved! 😁
The dead uncle sounds like Papyrus
Daww, look at this quaint, little girl suddenly take all the money because she apparently is a FRICKIN' MATHEMATICIAN.
Man is that a weird looking lawyer.
You're the
Solved it Ohmgeee!
Wow first one of these riddles I actually managed to solve.
How does this stop them for pestering you?
That moment you wait for the answer in complete silence and feel stupid
Wow I'm bad at math
Locker 1 was only touched once, so the code should be 1,2,3,5,7
My brain hurts
Haha almost solved this one
When you've done this riddle in school and have all the answers on paper
Math
While watching this video I feel like a idiot
I programmatically solved this riddle #java
I DID IT
There a cute and clever giro in my School with name lisa
Bruh tho like if that's me I'm smart af and I didn't even know it
My brain hurts
If you like riddles you can try Abstract : A riddle game available on Google play store. A new addictive game with difficult puzzles from a team of new developers.
Apparently im greedy
First one I got before seeing the answer! Good start to the morning
I didn't even understand the question. Or the answer.
Who cant solve anything
I somehow knew prime numbers would be involved
But how does that keep her from being pestered?
Lisa has quite a manly voice
Licherally got it first try, you guys are fuckin dumb lmfaoing at your life.
Finally solve another riddle but I spend more than 5 mins to figure out the pattern
This book website β€œfetching lobon only” (Google it) is simply incredible because it is not only user-friendly but also a great provider of numerous reading materials like books and documents. It has been of great help as well and I suggest it. If you love to read than this is the website for you. Whatever you need when it comes to books and reading materials is available here.
My fingers are deformed!!!!
Was there a skeleton there? You know, funeral of eccentric uncle who likes niece, crazy/evil family looking for inheritance of his money. Very Skulduggery Pleasant if you ask me.
Okay I solved it, but didn't know the terms that you explain the method with. What do you mean with factors naturally even out? And what do you mean with a perfect square in this situation?
Anyone know why the number of factors equals the number of times the locker is touched? That's the only part that doesn't make sense to me. How does "change the status of every 3rd locker for the remaining 98 relatives" get you to "Every locker has it's staus changed exactly as many times as that the number of factors in that lockers number"
These are the type of riddles The Riddler should be posing to Batman. I mean, I'm sure Bruce would still solve them with ease, but these are better than that 4th grade b***s**t he seems to hinge deadly, elaborate crimes upon.
0:24 dab
All square numbers is my guess
Dam I'm thicc
Pretty simple (he says before doing it)Spoilers [I hope] Its all the perfect squares (and one) that will be opened at the end:1 4 9 16 25 36 49 64 81 100 A lot of these sorts of riddles are just finding an equivalent question. They start closed and then every locker with 1 as a factor (all of them) is opened.Then all of the lockers divisible by 2 are switched--note that locker one isnt and wont be affected any longer.The third step has certain lockers open and others close, depending on what they were before, if it is a multiple of three then its state is changed.This is more than enough information.The state of a locker changes the same number of times as the number of factors that the locker's number has. 2 has two factors, 1 and 2, so it changes twice.Starting at a closed position this gives a final position as closed (closed, open, closed).Therefore an even number of factors leads to a closed final position and an odd number can be presumed to be the opposite but one that ends in the open position should be examined. One is a bad example as it is rather unique in math, so another number would be preferable.Luckily, the next one can be found by advancing the process shown at 1:19.As I mentioned with one, the last time a number changes is when it is that step because of this and since 4 is opened on the fourth step, we know that 4 ends open.Perfect.4's factors are 1 2 2 4...that is an even number of factors...so the idea doesnt hold? Nahhhh, 2 is in 4's factors twice but it is only called once in this scenerio.Now wer know that any duplicate numbers in a list of factors count only as one number, this leads to an odd number of factors and the number being open in the end.If there are duplicate numbers in a list of factors then that must mean that the square of that duplicated number is the number for which you are listing the factors of i.e. The original number is a perfect square.One isnt technically a perfect square but leaving that out and some other trivial bits, thats how I thought of it.Not as hard as it sounds if you know a bit of math but even if you do, good luck deciphering my writing πŸ˜‚
Before watching the answermy prediction is All perfect squares Ie. 36 1,2,3,4,6,9,12,18,36 All perfect squares are odd
I read this book exactly like this called the westing gam
Nice job
This makes no sense. you are just complicating it. you said the cycle is with 3 people so 1st one opens all 2nd and third dont matter and 4th one opens all again so you takel all the 3s out of 100 and you are left with 1 which will open all so evry locker will be open at the end
You gotta think about it πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”πŸ€”
I think if he gave it to me the relatives would just treat me as their master for the money XD
This is math
Uncle, instead of making this riddles, just give her 99% of your inheritance secretly by sending it to her bank account.and then ask the one who read you will to say "I give my inheritance to everyone equally." but its only 1% of em. pfft..
I'm feeling stupid watching Ted-ed's videos, like if you do too!
Ummmm what?
Sadly, the cousin that killed your uncle for his inheritence will get you next
Soo what happens when the will is contested?
I solved it after 2 minutes i feel so proud this is like the only thing i've accomplished today
Wouldn't that mean your relatives would treat you even worse cause they found out you're a smartass?
Sorry but this solution is wrong: The number 12 has factors 1,2,3,6,12; so it is changed 5 times. Therefore, it will be open at the end. In fact, whenever you have a number with an odd number of factors, and you multiply it by a new prime, that was not in its factorization, you get a new number with the same parity of factors. Hence this problem is alot more complex than what has been stated in the proof. The new solution will be: run through the lockers starting at the begining. Desregarding the factor 1, which appears on every number, you see that all the primes only have 1 other factor, so they will all be closed. This proof will be recursive. From the begining, 2 and 3 are closed. The next number, 4, is the number 2 times an old prime, i.e. a prime that was already in the factorization of 2, so 4 has exactly one extra factor than 2, so it will have a diferent status, so it will be open. 5 is prime, so its closed. 6 is 2 times a new prime, so it will have exactly 2 extra factors, so its parity will remain the same, ie it will be closed. Noting that you only need to check the status of the previous factor, and whether or you are multiplying it by a new primes, means that this computation is very quick to do. Hope someone gets the courage to read this long comment and maybe point out a misstake.
This isn't a riddle
Me and uncle: Heaven 99 other family : Hell

Can you solve the temple riddle? - Dennis E. Shasha

View full lesson: your expedition finally stands at the heart of the ancient temple. but as you study the inscriptions in the darkness, two wisps of green smo


Can you solve the bridge riddle? - Alex Gendler

View full lesson: taking that internship in a remote mountain lab might not have been the best idea. pulling that lever with the skull symbol just to see what


Can you solve the frog riddle? - Derek Abbott

View full lesson: you’re stranded in a rainforest, and you’ve eaten a poisonous mushroom. to save your life, you need an antidote excreted by a certain sp


The Prisoner's Dilemma

The prisoners dilemma is a hypothetical game set up showing a situation where people won't want to work together even when it's beneficial to do so. it's just a


What would happen if you didn’t drink water? - Mia Nacamulli

View full lesson: water is essentially everywhere in our world, and the average human is composed of between 55 and 60% water. so what role does water play in


Can you solve the virus riddle? - Lisa Winer

View full lesson: your research team has found a prehistoric virus preserved in the permafrost and isolated it for study. after a late night working, you’re


Can you solve the passcode riddle? - Ganesh Pai

View full lesson: in a dystopian world, your resistance group is humanity’s last hope. unfortunately, you’ve all been captured by the tyrannical rulers an


Can you solve the prisoner boxes riddle? - Yossi Elran

View full lesson: your favorite band is great at playing music...but not so great at being organized. they keep misplacing their instruments on tour, and itβ€


Can you solve the river crossing riddle? - Lisa Winer

View full lesson: as a wildfire rages through the grasslands, three lions and three wildebeest flee for their lives. to escape the inferno, they must cross ov


Can you solve "Einstein’s Riddle"? - Dan Van der Vieren

View full lesson: view all the clues here: before he turned physics upside down, a young albert einstein supposedly showed off his genius by devising a comp


3 Riddles Popular in the United States | Can you Solve it?

Can you solve the top 3 riddles which are so much popular in the united states! they are little bit tricky & funny too. please don’t see the answer until you


How do you decide where to go in a zombie apocalypse? - David Hunter

View full lesson: can geography save your life in case of, say, a zombie apocalypse? understanding the push and pull factors that create geographic movement -


Four sisters in Ancient Rome - Ray Laurence

View full lesson: how did the young, wealthy women of ancient rome spend their days? meet domitia and her sister domitia and her sister domitia and her sister


Can you solve the famously difficult green-eyed logic puzzle? - Alex Gendler

View full lesson: one hundred green-eyed logicians have been imprisoned on an island by a mad dictator. their only hope for freedom lies in the answer to one


Should you trust unanimous decisions? - Derek Abbott

View full lesson: imagine a police lineup where ten witnesses are asked to identify a bank robber they glimpsed fleeing the scene. if six of them pick the sam


Can you solve the locker riddle? - Lisa Winer